

Northern University, Nowshera

Spring 2024

Basic syntax & Operators in

Java
Week # 02 - Lecture 03 – 04

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

2

LLEEAARRNNIINNGG OOBBJJEECCTTIIVVEESS::

 Previous lecture (recap)

 Basic syntax of java

 Comments in java

 Identifiers/variables

 Rules for Naming Variables in Java

 Data types

 Primitive data types

 Reference data types

 An example Java program

 Operators

 Assignment Operators

 Arithmetic Operators

 Unary Operators

 Relational Operators

 Logical Operators

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

3

BBAASSIICC SSYYNNTTAAXX OOFF JJAAVVAA

About Java programs, it is very important to keep in mind the following points.

 Case Sensitivity − Java is case sensitive, which means

identifier Hello and hello would have different meaning in Java.

 Class Names − For all class names the first letter should be in Upper Case. If several

words are used to form a name of the class, each inner word's first letter should be

in Upper Case.

Example: class MyFirstJavaClass

Method Names − All method names should start with a Lower Case letter. If several words

are used to form the name of the method, then each inner word's first letter should be in

Upper Case.

Example: public void myMethodName()

CCOOMMMMEENNTTSS IINN JJAAVVAA

Java supports single-line and multi-line comments very similar to C and C++. All characters

available inside any comment are ignored by Java compiler.

Example

public class MyFirstJavaProgram {

 /* This is my first java program.

 * This will print 'Hello World' as the output

 * This is an example of multi-line comments.

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

4

 */

 public static void main(String []args) {

 // This is an example of single line comment

 /* This is also an example of single line comment. */

 System.out.println("Hello World");

 }

}

Output

Hello World

JJAAVVAA IIDDEENNTTIIFFIIEERRSS

All Java components require names. Names used for classes, variables, and methods

are called identifiers.

Here's an example to declare a variable in Java.

int speedLimit = 80;

Here, speedLimit is a variable of int data type, and is assigned value 80. Meaning,

the speedLimit variable can store integer values. You will learn about Java data types in

detail later in the article.

In the example, we have assigned value to the variable during declaration. However, it's not

mandatory. You can declare variables without assigning the value, and later you can store

the value as you wish. For example,

int speedLimit;

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

5

speedLimit = 80;

The value of a variable can be changed in the program, hence the name 'variable'. For

example,

int speedLimit = 80;

...

speedLimit = 90;

 Java is a statically-typed language. It means that all variables must be declared

before they can be used.

 Also, you cannot change the data type of a variable in Java within the same

scope. What is variable scope? Don't worry about it for now. For now, just

remember you cannot do something like this.

int speedLimit = 80;

...

float speedLimit;

RRUULLEESS FFOORR NNAAMMIINNGG VVAARRIIAABBLLEESS IINN JJAAVVAA

Java programming language has its own set of rules and conventions for naming variables.

Here's what you need to know:

 Variables in Java are case-sensitive

 A variable's name is a sequence of Unicode letters and digits. It can begin with a

letter, $ or _. However, it's convention to begin a variable name with a letter. Also,

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

6

variable name cannot use whitespace in Java.

 When creating variables, choose a name that makes sense. For

example, score, number, level makes more sense than variable name such

as s, n, and l.

 If you choose one word variable name, use all lowercase letters. For example, it's

better to use speed rather than SPEED, or sPEED.

 If you choose variable name having more than one word, use all lowercase letters

for the first word and capitalize the first letter of each subsequent word. For

example, speedLimit.

BBAASSIICC DDAATTAA TTYYPPEESS CCLLIICCKK HHEERREE FFOORR VVIIDDEEOO

Variables are nothing but reserved memory locations to store values. This means that when

you create a variable you reserve some space in the memory.

https://youtu.be/FVU1Qs_7Xos

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

7

Based on the data type of a variable, the operating system allocates memory and decides

what can be stored in the reserved memory. Therefore, by assigning different data types to

variables, you can store integers, decimals, or characters in these variables.

There are two data types available in Java –

 Primitve Data Types

 Reference data types

JJAAVVAA PPRRIIMMIITTIIVVEE DDAATTAA TTYYPPEESS

As mentioned above, Java is a statically-typed language. This means that, all variables must

be declared before they can be used.

int speed;

Here, speed is a variable, and the data type of the variable is int. The int data type

determines that the speed variable can only contain integers.

In simple terms, a variable's data type determines the values a variable can store. There are

8 data types predefined in Java programming language, known as primitive data types.

In addition to primitive data types, there are also referenced data types in Java (you will

learn about it in later chapters).

BBOOOOLLEEAANN

 The boolean data type has two possible values, either true or false.

 Default value: false.

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

8

 They are usually used for true/false conditions.

Example:

1. class BooleanExample {

2. public static void main(String[] args) {

3.

4. boolean flag = true;

5. System.out.println(flag);

6. }

7. }

When you run the program, the output will be:

true

BBYYTTEE

 The byte data type can have values from -128 to 127 (8-bit signed two's

complement integer).

 It's used instead of int or other integer data types to save memory if it's certain

that the value of a variable will be within [-128, 127].

 Default value: 0

Example:

1. class ByteExample {

2. public static void main(String[] args) {

3.

4. byte range;

5.

6. range = 124;

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

9

7. System.out.println(range);

8.

9. // Error code below. Why?

10. // range = 200

11. }

12. }

When you run the program, the output will be:

124

SSHHOORRTT

 The short data type can have values from -32768 to 32767 (16-bit signed two's

complement integer).

 It's used instead of other integer data types to save memory if it's certain that the

value of the variable will be within [-32768, 32767].

 Default value: 0

Example

1. class ShortExample {

2. public static void main(String[] args) {

3.

4. short temperature;

5.

6. temperature = -200;

7. System.out.println(temperature);

8.

9. }

10. }

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

10

When you run the program, the output will be:

-200

IINNTT

 The int data type can have values from -2
31

 to 2
31

-1 (32-bit signed two's

complement integer).

 If you are using Java 8 or later, you can use unsigned 32-bit integer with minimum

value of 0 and maximum value of 2
32

-1.

 Default value: 0

Example:

1. class IntExample {

2. public static void main(String[] args) {

3.

4. int range = -4250000;

5. System.out.println(range);

6. }

7. }

When you run the program, the output will be:

-4250000

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

11

LLOONNGG

 The long data type can have values from -2
63

 to 2
63

-1 (64-bit signed two's

complement integer).

 If you are using Java 8 or later, you can use unsigned 64-bit integer with minimum

value of 0 and maximum value of 2
64

-1.

 Default value: 0

Example:

1. class LongExample {

2. public static void main(String[] args) {

3.

4. long range = -42332200000L;

5. System.out.println(range);

6. }

7. }

When you run the program, the output will be:

-42332200000

Notice, the use of L at the end of -42332200000. This represents that it's an integral literal

of long type. You will learn about integral literals later.

DDOOUUBBLLEE

 The double data type is a double-precision 64-bit floating point.

 It should never be used for precise values such as currency.

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

12

 Default value: 0.0 (0.0d)

Example:

1. class DoubleExample {

2. public static void main(String[] args) {

3.

4. double number = -42.3;

5. System.out.println(number);

6. }

7. }

When you run the program, the output will be:

-42.3

FFLLOOAATT

 The float data type is a single-precision 32-bit floating point.

 It should never be used for precise values such as currency.

 Default value: 0.0 (0.0f)

Example:

1. class FloatExample {

2. public static void main(String[] args) {

3.

4. float number = -42.3f;

5. System.out.println(number);

6. }

7. }

When you run the program, the output will be:

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

13

-42.3

Notice that, we have used -42.3f instead of -42.3in the above program. It's because -

42.3 is a double literal. To tell compiler to treat -42.3 as float rather than double, you

need to use f or F.

CCHHAARR

 It's a 16-bit Unicode character.

 The minimum value of char data type is '\u0000' (0). The maximum value of char

data type is '\uffff'.

 Default value: '\u0000'

Example:

1. class CharExample {

2. public static void main(String[] args) {

3.

4. char letter = '\u0051';

5. System.out.println(letter);

6. }

7. }

When you run the program, the output will be:

Q

You get the output Q because the Unicode value of Q is '\u0051'. Here is another

example.

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

14

1. class CharExample {

2. public static void main(String[] args) {

3.

4. char letter1 = '9';

5. System.out.println(letter1);

6.

7. char letter2 = 65;

8. System.out.println(letter2);

9.

10. }

11. }

When you run the program, the output will be:

9

A

When you print letter1, you will get 9 because letter1 is assigned character '9'.

When you print letter2, you get A because the ASCII value of 'A' is 65. It's because java

compiler treats character as integral type.

Java also provides support for character strings via java.lang.String class. Here's how you

can create a String object in Java:

myString = "Programming is awesome";

Java String is an important topic which you will learn in detail in later chapters. However, if

you are not a newbie in programming and want to learn it now, visit Java String.

Character and String Literals

 They contain Unicode (UTF-16) characters.

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

15

 For char literals, single quotation is used. For example, 'a', '\u0111' etc.

 For String literals, double quotation is used. For

example, "programming", "Java 8"

 Java also supports a few special escape sequences. For

example, \b (backspace), \t (tab), \n (line feed), \f (form feed), \r (carriage

return), \" (double quote), \' (single quote), and \\ (backslash).

1. class DoubleExample {

2. public static void main(String[] args) {

3.

4. char myChar = 'g';

5. char newLine = '\n';

6. String myString = "Java 8";

7.

8. System.out.println(myChar);

9. System.out.println(newLine);

10. System.out.println(myString);

11. }

12. }

When you run the program, the output will be:

G

Java 8

RREEFFEERREENNCCEE DDAATTAA TTYYPPEESS CCLLIICCKK HHEERREE FFOORR VVIIDDEEOO

 Reference variables are created using defined constructors of the classes. They are

used to access objects. These variables are declared to be of a specific type that

cannot be changed. For example, Employee, Puppy, etc.

https://youtu.be/EH7_zlpa3DQ

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

16

 Class objects and various type of array variables come under reference datatype.

 Default value of any reference variable is null.

 A reference variable can be used to refer any object of the declared type or any

compatible type.

Example: Animal animal = new Animal("giraffe");

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

17

JJAAVVAA PPRROOGGRRAAMM TTOO DDEEMMOONNSSTTRRAATTEE DDAATTAA TTYYPPEESS &&

CCOOMMMMEENNTTSS

Let us look at a simple code that will print the basics discussed above.

Example

public class WeekTwo {

 public static void main(String[] args) {

 System.out.println("Welcome to java Programming");

 System.out.println("We are learning Basic Syntax of Java\n\n");

 System.out.println("// This is a single line comment in Java");

 System.out.println("/* This is a multi line comment in Java */");

 System.out.println("\n\nHere we are going to declare int data type");

 int intData;

 intData=10;

 System.out.println("The value of variable 'intData' is "+ intData);

 float floatData;

 floatData=2.5f;

 System.out.println("\n\nThe value of variable 'floatData' is "+ floatData);

 System.out.println("Note we used 'f' with float value");

 double doubleData;

 doubleData=123232.45;

 System.out.println("\n\nThe value of variable 'doubleData' is "+

doubleData);

 }

}

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

18

Output

Welcome to java Programming

We are learning Basic Syntax of Java

// This is a single line comment in Java

/* This is a multi line comment in Java */

Here we are going to declare int data type

The value of variable 'intData' is 10

The value of variable 'floatData' is 2.5

Note we used 'f' with float value

The value of variable 'doubleData' is 123232.45

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

19

OOPPEERRAATTOORRSS CCLLIICCKK HHEERREE FFOORR VVIIDDEEOO

Java provides a rich set of operators to manipulate variables. We can divide all the Java

operators into the following groups.

 Assignment Operators

 Arithmetic Operators

 Relational Operators

 Logical Operators

AASSSSIIGGNNMMEENNTT OOPPEERRAATTOORR

Assignment operators are used in Java to assign values to variables. For example,

int age;

age = 5;

The assignment operator assigns the value on its right to the variable on its left. Here, 5 is

assigned to the variable age using = operator.

There are other assignment operators too. However, to keep things simple, we will learn

other assignment operators later in this article.

Example 1: Assignment Operator

1. class AssignmentOperator {

2. public static void main(String[] args) {
3.

4. int number1, number2;
5.

6. // Assigning 5 to number1

7. number1 = 5;

8. System.out.println(number1);

https://youtu.be/e2lVip1kUAM

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

20

9.

10. // Assigning value of variable number2 to number1

11. number2 = number1;

12. System.out.println(number2);

13. }

14. }

When you run the program, the output will be:

5

5

More Assignment Operators

We have only discussed about one assignment operator = in the beginning of the article.

Except this operator, there are quite a few assignment operators that helps us to write

cleaner code.

Operator Example Equivalent to

+= x += 5 x = x + 5

-= x -= 5 x = x - 5

*= x *= 5 x = x * 5

/= x /= 5 x = x / 5

%= x %= 5 x = x / 5

<<= x <<= 5 x = x << 5

>>= x >>= 5 x = x >> 5

&= x &= 5 x = x & 5

^= x ^= 5 x = x ^ 5

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

21

Operator Example Equivalent to

|= x |= 5 x = x | 5

Java Assignment Operators

AARRIITTHHMMEETTIICC OOPPEERRAATTOORRSS

Arithmetic operators are used to perform mathematical operations like addition,

subtraction, multiplication etc.

Operator Meaning

+ Addition (also used for string concatenation)

- Subtraction Operator

* Multiplication Operator

/ Division Operator

% Remainder Operator

Java Arithmetic Operators

Example 2: Arithmetic Operator

1. class ArithmeticOperator {

2. public static void main(String[] args) {

3.

4. double number1 = 12.5, number2 = 3.5, result;

5.

6. // Using addition operator

7. result = number1 + number2;

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

22

8. System.out.println("number1 + number2 = " + result);

9.

10. // Using subtraction operator

11. result = number1 - number2;

12. System.out.println("number1 - number2 = " + result);

13.

14. // Using multiplication operator

15. result = number1 * number2;

16. System.out.println("number1 * number2 = " + result);

17.

18. // Using division operator

19. result = number1 / number2;

20. System.out.println("number1 / number2 = " + result);

21.

22. // Using remainder operator

23. result = number1 % number2;

24. System.out.println("number1 % number2 = " + result);

25. }

26. }

When you run the program, the output will be:

number1 + number2 = 16.0

number1 - number2 = 9.0

number1 * number2 = 43.75

number1 / number2 = 3.5714285714285716

number1 % number2 = 2.0

In above example, all operands used are variables. However, it's not necessary at all.

Operands used in arithmetic operators can be literals as well. For example,

result = number1 + 5.2;

result = 2.3 + 4.5;

number2 = number1 -2.9;

The + operator can also be used to concatenate two or more strings.

Example 3: Arithmetic Operator for Strings

1. class ArithmeticOperator {

2. public static void main(String[] args) {

3.

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

23

4. String start, middle, end, result;

5.

6. start = "Talk is cheap. ";

7. middle = "Show me the code. ";

8. end = "- Linus Torvalds";

9.

10. result = start + middle + end;

11. System.out.println(result);

12. }

13. }

When you run the program, the output will be:

Talk is cheap. Show me the code. - Linus Torvalds

UUNNAARRYY OOPPEERRAATTOORRSS

Unary operator performs operation on only one operand.

Operator Meaning

+ Unary plus (not necessary to use since numbers are positive without using it)

- Unary minus; inverts the sign of an expression

++ Increment operator; increments value by 1

-- decrement operator; decrements value by 1

! Logical complement operator; inverts the value of a boolean

Example 4: Unary Operator

1. class UnaryOperator {

2. public static void main(String[] args) {

3.

4. double number = 5.2, resultNumber;

5. boolean flag = false;

6.

7. System.out.println("+number = " + +number);

8. // number is equal to 5.2 here.

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

24

9.

10. System.out.println("-number = " + -number);

11. // number is equal to 5.2 here.

12.

13. // ++number is equivalent to number = number + 1

14. System.out.println("number = " + ++number);

15. // number is equal to 6.2 here.

16.

17. // -- number is equivalent to number = number - 1

18. System.out.println("number = " + --number);

19. // number is equal to 5.2 here.

20.

21. System.out.println("!flag = " + !flag);

22. // flag is still false.

23. }

24. }

When you run the program, the output will be:

+number = 5.2

-number = -5.2

number = 6.2

number = 5.2

!flag = true

You can also use ++ and -- operator as both prefix and postfix in Java. The ++ operator

increases value by 1 and -- operator decreases value by 1.

int myInt = 5;

++myInt // myInt becomes 6

myInt++ // myInt becomes 7

--myInt // myInt becomes 6

myInt-- // myInt becomes 5

Simple enough till now. However, there is a crucial difference while using increment and

decrement operator as prefix and postfix. Consider this example,

Example 5: Unary Operator

1. class UnaryOperator {

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

25

2. public static void main(String[] args) {

3.

4. double number = 5.2;

5.

6. System.out.println(number++);

7. System.out.println(number);

8.

9. System.out.println(++number);

10. System.out.println(number);

11. }

12. }

When you run the program, the output will be:

5.2

6.2

7.2

7.2

When System.out.println(number++); statement is executed, the original value is evaluated

first. The number is increased only after that. That's why you are getting 5.2 as an output.

Then, when System.out.println(number); is executed, the increased value 6.2 is displayed.

However, when System.out.println(++number); is executed, number is increased by 1 first before

it's printed on the screen.

Similar is the case for decrement -- operator.

EEQQUUAALLIITTYY AANNDD RREELLAATTIIOONNAALL OOPPEERRAATTOORRSS

The equality and relational operators determines the relationship between two operands. It

checks if an operand is greater than, less than, equal to, not equal to and so on. Depending

on the relationship, it results to either true or false.

Operator Description Example

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

26

Operator Description Example

== equal to 5 == 3 is evaluated to false

!= not equal to 5 != 3 is evaluated to true

> greater than 5 > 3 is evaluated to true

< less than 5 < 3 is evaluated to false

>= greater than or equal to 5 >= 5 is evaluated to true

<= less then or equal to 5 <= 5 is evaluated to true

Java Equality and Relational Operators

Equality and relational operators are used in decision making and loops (which will be

discussed later). For now, check this simple example

Example 6: Equality and Relational Operators

1. class RelationalOperator {

2. public static void main(String[] args) {

3.

4. int number1 = 5, number2 = 6;

5.

6. if (number1 > number2)

7. {

8. System.out.println("number1 is greater than number2.");

9. }

10. else

11. {

12. System.out.println("number2 is greater than number1.");

13. }

14. }

15. }

When you run the program, the output will be:

number2 is greater than number1.

Here, we have used > operator to check if number1 is greater than number2 or not.

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

27

Since, number2 is greater than number1, the expression number1 > number2 is evaluated to false.

Hence, the block of code inside else is executed and the block of code inside if is skipped.

If you didn't understand the above code, don't worry. You will learn it in detail in Java

if...else article.

For now, just remember that the equality and relational operators compares two operands

and is evaluated to either true or false.

In addition to relational operators, there is also a type comparison operator instanceof which

compares an object to a specified type. For example,

IINNSSTTAANNCCEE OOFF OOPPEERRAATTOORR

Here's an example of instanceof operator.

1. class instanceofOperator {

2. public static void main(String[] args) {

3.

4. String test = "asdf";

5. boolean result;

6.

7. result = test instanceof String;

8. System.out.println(result);

9. }

10. }

When you run the program, the output will be true. It's because test is the instance

of String class.

You will learn more about instanceof operator works once you understand Java Classes and

Objects.

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

28

LLOOGGIICCAALL OOPPEERRAATTOORRSS

The logical operators || (conditional-OR) and && (conditional-AND) operates on boolean

expressions. Here's how they work.

Operator Description Example

||

conditional-OR; true if either of the boolean expression

is true

false || true is evaluated

to true

&&

conditional-AND; true if all boolean expressions

are true

false && true is evaluated to

false

Java Logical Operators

Example 8: Logical Operators

1. class LogicalOperator {

2. public static void main(String[] args) {

3.

4. int number1 = 1, number2 = 2, number3 = 9;

5. boolean result;

6.

7. // At least one expression needs to be true for result to be true

8. result = (number1 > number2) || (number3 > number1);

9. // result will be true because (number1 > number2) is true

10. System.out.println(result);

11.

12. // All expression must be true from result to be true

13. result = (number1 > number2) && (number3 > number1);

14. // result will be false because (number3 > number1) is false

15. System.out.println(result);

16. }

17. }

When you run the program, the output will be:

true

false

AJ/ Week 02 - Lecture 03 - 04 Object Oriented Programming using Java (ECS-122)

29

Logical operators are used in decision making and looping.

TTEERRNNAARRYY OOPPEERRAATTOORR

The conditional operator or ternary operator ?: is shorthand for if-then-else statement. The

syntax of conditional operator is:

variable = Expression ? expression1 : expression2

Here's how it works.

 If the Expression is true, expression1 is assigned to variable.

 If the Expression is false, expression2 is assigned to variable.

Example 9: Ternary Operator

1. class ConditionalOperator {

2. public static void main(String[] args) {

3.

4. int februaryDays = 29;

5. String result;

6.

7. result = (februaryDays == 28) ? "Not a leap year" : "Leap year";

8. System.out.println(result);

9. }

10. }

When you run the program, the output will be:

Leap year

	Basic Syntax of Java
	Comments in Java
	Example

	public class MyFirstJavaProgram {
	/* This is my first java program.
	* This will print 'Hello World' as the output
	* This is an example of multi-line comments.
	*/
	public static void main(String []args) {
	// This is an example of single line comment
	/* This is also an example of single line comment. */
	System.out.println("Hello World");
	}
	}
	Output

	Hello World
	Java Identifiers
	All Java components require names. Names used for classes, variables, and methods are called identifiers.
	Rules for Naming Variables in Java
	Basic Data Types click here for video
	Java Primitive Data Types
	boolean
	Example:

	byte
	Example:

	short
	Example

	int
	Example:

	long
	Example:

	double
	Example:

	float
	Example:

	char
	Example:
	Character and String Literals

	Reference Data Types click here for video
	Java Program to demonstrate data types & comments
	Operators click here for video
	Assignment Operator
	Example 1: Assignment Operator
	More Assignment Operators

	Arithmetic Operators
	Example 2: Arithmetic Operator
	Example 3: Arithmetic Operator for Strings

	Unary Operators
	Example 4: Unary Operator
	Example 5: Unary Operator

	Equality and Relational Operators
	Example 6: Equality and Relational Operators

	Instance of Operator
	Logical Operators
	Example 8: Logical Operators

	Ternary Operator
	Example 9: Ternary Operator

